172 research outputs found

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area

    An update on Ym1 and its immunoregulatory role in diseases

    Get PDF
    Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1’s role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases

    Nonlinear ESO-based vibration control for an all-clamped piezoelectric plate with disturbances and time delay: design and hardware implementation

    Get PDF
    Considering the problems of model uncertainties, higher harmonics, uncertain boundary conditions, external excitations and system time delay in practical vibration control system, a novel active vibration control method is proposed to suppress the vibration of a thin plate structure with acceleration sensor and piezoelectric bimorph actuator in this paper. First, a nonlinear extended state observer (NESO)-based controller is designed to ensure the anti-disturbance performance of the structural vibration control system. Then, an enhanced differentiator-based time delay compensation method is introduced to improve the vibration suppression performance of the NESO-based controller. A real time hardware-in-the-loop benchmark for an all-clamped piezoelectric thin plate is designed to verify and compare the performance of the developed controller against conventional ESO-based methods (linear ESO with/without time delay compensation, NESO without time compensation). The best vibration suppression and disturbance rejection performance of the proposed NESO-based controller with an enhanced time delay compensator is verified in the comparative experimental results. This work is able to provide practitioners with vital guidance in designing active vibration control system in the presence of disturbances and time delay

    Simulation and experimental on the quick-freezing of diced mango by dry ice spray

    Get PDF
    In order to improve the quality of quick-frozen diced mango, a cylindrical quick-frozen container with dry ice spray is designed, the temperature field and velocity field of diced mango sprayed by dry ice in quick-freezing tank are simulated by COMSOL Multiphysics. The effects of different inlet velocities (0.15, 0.20, 0.25, 0.30, 0.35 and 0.40m/s), on the quick-freezing process of diced mango are studied. The results show that with the increase of the inlet velocity of dry ice, the time for diced mango to meet the requirements of quick freezing is continuously shortened, and the outlet solid fraction fluctuates within a certain range. When the inlet velocity is 0.25m/s, the inlet radius is 15mm and the size of diced mango is 10mm, the quick-freezing effect is the best. By the experimental verification, the average errors of surface temperature and core temperature of diced mango to meet the requirements of quick freezing are 3.9% and 3.8% respectively. The results lay a foundation for the popularization and application of dry ice spray quick frozen diced mango
    • …
    corecore